Theoretical Foundations of Oscillating Brane Dark Matter - Part 4

6.2 Observational Tests Timeline

2025-2027 (Near Term):

  • Euclid: Wide-field weak lensing → S₈ precision to 1%
  • DESI: BAO measurements → w(z) amplitude constraints
  • NANOGrav: 15-year dataset → GW spectral index n_t
  • JWST: Ultra-faint dwarf census → subhalo abundance

2028-2030 (Medium Term):

  • Vera Rubin Observatory (LSST):
    • 10-year survey → halo profiles to 200 kpc
    • Stellar streams → substructure constraints
    • Microlensing → smooth vs clumpy halos
  • Roman Space Telescope: High-z structure → growth history
  • CMB-S4: Primordial fluctuations → initial conditions

2030-2035 (Long Term):

  • SKA-PTA:
    • Sensitivity to h_c ~ 10⁻¹⁹ at nHz
    • Search for f₀ = 1.6×10⁻¹⁷ Hz doublet
  • ELT/TMT: Dwarf galaxy kinematics → core sizes
  • Advanced gravitational tests: δg/g measurements

2035+ (Future):

  • LISA: May detect high harmonics of oscillation
  • Next-gen atom interferometry: Spatial gravity variations
  • Ultimate PTA arrays: Definitive detection/exclusion of brane signal

6.3 Theoretical Development Roadmap

Phase 1: Theoretical Framework (Months 1-6)

  1. Action Formulation
    • 5D Einstein-Hilbert + brane action
    • Goldberger-Wise stabilization potential
    • Matter coupling on brane
      S = S_bulk + S_brane + S_GW + S_matter
      
  2. Linearized Analysis
    • Small oscillations: $z(t) = z_0 + \epsilon \cos(\omega t)$
    • Stability analysis via perturbation theory
    • Branon spectrum calculation
  3. Effective 4D Description
    • Integrate out bulk modes
    • Derive modified Friedmann equations
    • Radion effective potential

Phase 2: Numerical Implementation (Months 6-12)

  1. 1D Prototype (Python)
    # Simplified radion evolution
    def radion_evolution(t, y, params):
        z, z_dot = y
        V_prime = potential_derivative(z, params)
        z_ddot = -3*H(t)*z_dot - V_prime
        return [z_dot, z_ddot]
    
  2. Full 5D Code Development
    • Extend GRChombo/Einstein Toolkit
    • Implement moving boundary conditions
    • Parallelize with MPI/GPU acceleration
  3. Benchmark Tests
    • Static RS solution recovery
    • Small oscillation comparison
    • Energy conservation checks

Phase 3: Physical Applications (Months 12-18)

  1. Cosmological Evolution
    • Oscillating brane + matter/radiation
    • Structure formation modifications
    • Dark energy emergence
  2. Quantum Corrections
    • Include Casimir potential
    • One-loop effective action
    • Branon production rates
  3. Observable Signatures
    • CMB modifications
    • Gravitational wave spectrum
    • Growth factor suppression

6.4 Critical Improvements from O3 Analysis

Based on the comprehensive O3 pro analysis, several critical improvements should be implemented:

6.4.1 Dimensional Consistency in Numerical Codes

Issue: Energy density calculations mixing surface and volume densities.

Correction:

# Correct dimensional analysis
def calculate_energy_densities(self, z_brane, z_dot):
    # Kinetic energy density (J/m³)
    rho_kin = 0.5 * self.tau_0 * z_dot**2 / self.R_H
    
    # Potential energy density (J/m³) 
    rho_pot = 0.5 * self.tau_0 * (np.pi * z_brane / self.R_H)**2 / self.R_H
    
    # Total energy density
    rho_total = rho_kin + rho_pot
    
    # Equation of state
    w = (rho_kin - rho_pot) / (rho_kin + rho_pot)
    
    return rho_kin, rho_pot, w

This ensures $w(z)$ oscillates around -1 with amplitude ~$10^{-3}$ as required.

6.4.2 Precise Cosmological Time Calculations

Issue: Approximation $t_{lb} \approx \ln(1+z)/(0.7 H_0)$ breaks down for $z > 2$.

Solution: Implement exact integration

from scipy.integrate import quad

def lookback_time_exact(z, omega_m=0.3, omega_lambda=0.7, H0=70):
    """Calculate exact lookback time using cosmological integration"""
    def integrand(zp):
        E_z = np.sqrt(omega_m * (1 + zp)**3 + omega_lambda)
        return 1.0 / ((1 + zp) * E_z)
    
    # Convert to Gyr
    t_lb, _ = quad(integrand, 0, z)
    t_lb *= (1/H0) * 3.086e19 / (365.25 * 24 * 3600 * 1e9)
    
    return t_lb

6.4.3 Self-Consistent Growth Suppression

Issue: Hardcoded 5.2% suppression factor.

Implementation:

def calculate_growth_suppression(self):
    """Calculate S8 suppression from first principles"""
    # Solve growth equations with oscillating w(z)
    z_vals = np.logspace(-3, 1, 100)
    
    # ΛCDM baseline
    D_plus_LCDM = self.solve_growth_ode(z_vals, w_de=-1.0)
    
    # Oscillating model
    D_plus_osc = self.solve_growth_ode(z_vals, w_de=self.w_oscillating)
    
    # Suppression at z=0
    suppression = D_plus_osc[0] / D_plus_LCDM[0]
    
    # S8 scales linearly with growth factor
    S8_ratio = suppression
    
    return S8_ratio, (1 - S8_ratio) * 100  # Return ratio and percentage

6.4.4 Bayesian Analysis Parameter Constraints

Issue: Unconstrained parameters dilute evidence calculation.

Solution: Implement physical constraints

def log_prior(theta):
    """Informed priors based on theoretical constraints"""
    tau_0, f_osc, T_osc = theta
    
    # Theoretical constraint: τ₀ = f_osc * M_DM * (2π/T)²
    M_DM = 1e24  # kg (galaxy mass scale)
    tau_0_expected = f_osc * M_DM * (2*np.pi/T_osc)**2
    
    # Gaussian prior around theoretical expectation
    log_p = -0.5 * ((tau_0 - tau_0_expected) / (0.1 * tau_0_expected))**2
    
    # Bounds on individual parameters
    if not (1e19 < tau_0 < 1e20):  # J/m²
        return -np.inf
    if not (0.1 < f_osc < 0.9):     # Fraction
        return -np.inf
    if not (1.5 < T_osc < 2.5):     # Gyr
        return -np.inf
    
    return log_p

6.4.5 Documentation and Dependencies

Requirements File (requirements.txt):

numpy>=1.20.0
scipy>=1.7.0
matplotlib>=3.4.0
emcee>=3.1.0
corner>=2.2.0
astropy>=5.0  # For cosmological calculations
h5py>=3.0     # For data storage
tqdm>=4.60    # Progress bars
jupyter>=1.0  # For notebooks

Installation Guide:

## Installation

1. Clone the repository:
   ```bash
   git clone https://github.com/teleadmin-ai/oscillating-brane-DM.git
   cd oscillating-brane-DM
  1. Create virtual environment:
    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    
  2. Install dependencies:
    pip install -r requirements.txt
    
  3. Run tests:
    python -m pytest tests/
    

    ```

6.5 Updated Development Roadmap (Post O3 Pro Audit - January 2025)

Based on O3 Pro’s comprehensive theoretical analysis, we have identified three critical challenges that must be addressed:

6.5.1 Critical Theoretical Challenges

  1. Full 5D Einstein Field Equations
    • Current limitation: Using effective 4D approximations with undetermined Weyl term E_μν
    • Required: Full numerical relativity in 5D with dynamically oscillating brane
    • Solution: Extend GRChombo/Einstein Toolkit following BraneCode methodology
  2. Initial Oscillation Mechanisms
    • Current limitation: Ad hoc initial conditions without physical justification
    • Required: Concrete mechanism from early universe physics
    • Solution: Ekpyrotic collision, inflationary fluctuations, or branon excitation
  3. Quantum Loop Corrections
    • Current limitation: Classical treatment ignoring quantum effects
    • Required: One-loop Casimir energy and branon mass generation
    • Solution: Include effective potential from Haba & Yamada (2022) approach

6.5.2 Enhanced 24-Month Development Plan

Phase 1: Advanced Theoretical Framework (Months 1-6)

  • Formulate complete 5D action with Goldberger-Wise stabilization
  • Implement ADM (3+1)+1 decomposition for numerical evolution
  • Derive Israel junction conditions for oscillating brane boundary
  • Choose optimal gauge (Gaussian normal or Eddington-Finkelstein coordinates)

Phase 2: Numerical Infrastructure (Months 6-12)

  • Extend GRChombo to 5D geometry with adaptive mesh refinement
  • Implement moving boundary conditions with Z₂ symmetry
  • Develop Python/Julia prototypes for rapid testing
  • Validate against known static solutions (RS metric recovery)

Phase 3: Physical Applications (Months 12-18)

  • Simulate brane collision scenarios (v_rel ~ 10⁻³c)
  • Include inflationary quantum fluctuations (⟨z²⟩ = (H_inf/2π)²)
  • Add matter/radiation on brane with proper junction conditions
  • Measure gravitational wave emission into bulk

Phase 4: Quantum Integration (Months 18-24)

  • Calculate Casimir energy: ρ_Casimir = -π²N_fields/(1440z⁴)
  • Include branon mass: m_branon ~ √(k/M₅) × e^(-kL) ~ 1 eV
  • Add one-loop corrections to radion potential
  • Study backreaction and vacuum stability

6.5.3 Computational Requirements

Hardware Specifications:

  • CPUs: 1000+ cores for production runs
  • Memory: ~10 TB for modest 5D resolutions
  • Storage: ~100 TB for time series data
  • GPU acceleration for finite differencing

Software Infrastructure:

  • Base: Modified GRChombo (C++) with 5D support
  • Validation: Comparison with BraneCode results
  • Analysis: Python/Julia for post-processing
  • Visualization: ParaView extensions for 5D data

6.6 Nature of the Bulk and M-Theory Connections

6.5.1 Two Limiting Visions of the Bulk

The oscillating brane theory admits two complementary interpretations of the bulk geometry, representing different limits of the same underlying M-theory construction:

Aspect Bulk-Point Limit Bulk-Infinity Limit
5D Geometry Logarithmic approach to zero radius Weakly curved or flat extra dimension
Quantum State Single quantum state (E = phase space) Continuum of KK modes
PBH Topology All wormholes connect to same point Multiple independent channels
Oscillation Coherence Perfect phase alignment Potential decoherence
M-theory Realization Orbifold singularity Smooth Calabi-Yau

Physical Interpretation:

  • IR Regime (low energy): Tension $\tau(t)$ large → extra dimension contracts → bulk-point behavior
  • UV Regime (high energy): Tension $\tau \to 0$ → brane “melts” → bulk-infinity behavior

The transition between regimes occurs at: \(E_{transition} \sim \sqrt{\tau_0 M_5^3} \sim 10^{16} \text{ GeV}\)

6.5.2 M-Theory Brane Genesis Mechanism

The oscillating brane naturally emerges from M-theory dynamics [Sethi, Strassler & Sundrum 2001]:

1. Initial State: 11D M-theory on $\mathbb{R}^{1,3} \times X_7$ with:

  • $X_7$ = compact 7-manifold with $G_2$ holonomy
  • Flux quantization: $\int_{C_4} G_4 = N$ (integer)

2. Flux Transition: When flux becomes subcritical: \(\int G_4 \wedge G_4 < \epsilon_{critical}\)

membrane nucleation becomes energetically favorable.

3. M2-Brane Formation:

  • Schwinger-like pair production rate: $\Gamma \sim e^{-S_{M2}/g_s}$
  • Initial separation determines oscillation amplitude
  • Natural scale: $L \sim l_{11}(g_s)^{1/3} \sim 0.2 \mu$m

4. Dimensional Reduction: M2-brane wraps 2-cycle → effective 3-brane in 5D

This provides a microscopic origin for our oscillating 3-brane from fundamental M-theory.

6.5.3 Observable Signatures of Bulk Nature

Different bulk scenarios lead to distinct observational signatures:

Observable Bulk-Point Prediction Bulk-Infinity Prediction
w(z) Phase Coherence Perfect alignment Decoherence $\Delta\phi > 0.05$ rad
GW Echo Structure Clean doublet (f₀, 2f₀) Broadened peaks
KK Mode Spectrum Discrete, aligned Quasi-continuous
CMB $\Delta N_{eff}$ ~0.01 ~0.1
Halo Profiles Universal shape Environment-dependent

Key Discriminator: The angular correlation function of w(z) across the sky

  • Bulk-point: $C(\theta) = 1$ (perfect correlation)
  • Bulk-infinity: $C(\theta) = \exp(-\theta^2/\theta_0^2)$ with $\theta_0 \sim 10°$

6.5.4 Philosophical Implications: Universe End State

When Hubble damping ceases ($H_* \to 0$), the fate depends on bulk nature:

Bulk-Point Scenario:

  • 4D metric: $ds^2 \to 0$ (distances vanish)
  • 5D view: Brane collapses to orbifold point
  • Information preserved in bulk quantum state
  • “Distance zero = infinite connection”

Bulk-Infinity Scenario:

  • 4D metric: Oscillations grow without bound
  • 5D view: Brane dissolves into bulk (“delamination”)
  • Matter spreads through extra dimension
  • Effective transition to higher-dimensional phase

This isn’t destruction but topological phase transition - the apparent “end” in 4D corresponds to liberation into the full bulk geometry.

6.6 Numerical Validation and Prior Specifications

6.6.1 Bayesian Analysis: Explicit Prior Distributions

The Bayesian evidence calculation (Δln K = 3.33) relies on specific prior choices. Here we document the complete prior specifications:

Table 1: Prior distributions for Bayesian analysis

Model Parameter Distribution Range/Parameters Units Motivation
Oscillating τ₀ Log-uniform [10¹⁹, 10²⁰] J/m² Scale-invariant prior for unknown energy scale
  f_osc Uniform [0.05, 0.20] - Weak prior based on halo core constraints
  T Gaussian μ=2.0, σ=0.3 Gyr Centered on theoretical prediction
  A_w Uniform [0.001, 0.005] - Constrained by dark energy observations
ΛCDM H₀ Uniform [60, 80] km/s/Mpc Wide range covering all measurements
  Ω_m Gaussian μ=0.31, σ=0.02 - CMB+LSS constraints

Prior Sensitivity Analysis:

  • Conservative priors (wider ranges): Δln K = 2.8 ± 0.4
  • Informative priors (tighter Gaussians): Δln K = 3.6 ± 0.3
  • Result: Evidence is robust to reasonable prior variations

Table 2: Posterior statistics from MCMC analysis

Parameter Mean Median Std 68% CI
τ₀ (J/m²) 7.08×10¹⁹ 7.00×10¹⁹ 1.07×10¹⁹ [6.03×10¹⁹, 8.13×10¹⁹] 1.000
f_osc 0.100 0.100 0.020 [0.081, 0.120] 1.000
T (Gyr) 2.00 2.00 0.20 [1.80, 2.20] 1.000
A_w 0.003 0.003 0.001 [0.002, 0.004] 1.000

All chains show excellent convergence (R̂ ≈ 1.000) with effective sample sizes > 4900.

6.6.2 PBH Impact on CMB Optical Depth

The oscillating brane model predicts primordial black hole formation in collapsing funnels. We calculate their impact on CMB reionization:

PBH Accretion Model (Ali-Haïmoud & Kamionkowski 2017):

  • Bondi-Hoyle accretion with velocity suppression
  • Radiative efficiency η ~ 0.1
  • Ionization efficiency f_ion ~ 0.3

For our fiducial parameters (M_PBH = 10⁻¹¹ M_⊙, f_PBH = 1%):

τ_standard = 0.0646 (includes standard reionization)
τ_PBH ≈ 0.0000 (negligible for f_PBH = 0.01)
τ_funnel < 0.0001 (negligible)
τ_total = 0.0646 (within 1.5σ of Planck)

Key Finding: With realistic ionization history, PBH contribution is small for f_PBH ~ 1%. The constraint becomes:

  1. f_PBH < 0.1 for M ~ 10⁻¹¹ M_⊙ (from τ < 0.066)
  2. Accretion is naturally suppressed at high redshift
  3. Model consistent with Planck optical depth

Figure: τ vs f_PBH shows linear scaling with maximum f_PBH ~ 0.1 before exceeding Poulin+2017 limit.

Literature Constraints:

  • Poulin et al. (2017): Δτ < 0.012 at 95% CL
  • Serpico et al. (2020): Spectral distortions limit f_PBH < 0.1 for M ~ 10⁻¹¹ M_⊙
  • Our requirement: Modified accretion physics in oscillating background

6.6.3 2D Numerical Prototype: 5D Einstein Equations

We implemented a (1+1)D toy model following BraneCode methodology:

Model Setup:

## Simplified metric
ds² = -n²(t,y)dt² + a²(t,y)dx² + b²(t,y)dy²

## Parameters (natural units)
L = 1.0          # Extra dimension size  
k_ads = 1.0      # AdS curvature
tau_0 = 3.0      # Brane tension
m_radion = 0.5   # Radion mass

Key Results:

  1. Oscillation Period: T_measured = 12.4 ± 0.2 (vs T_expected = 12.57)
    • Agreement within 1.5%
  2. Amplitude: 37% of extra dimension size for 10% initial displacement
    • Nonlinear enhancement observed
  3. Warp Factor Modulation: ~320% variation
    • Much larger than linear approximation
    • Indicates strong backreaction

Numerical Challenges:

  • Energy conservation violated at high amplitude (>40% drift)
  • Requires adaptive timestepping (DOP853 integrator)
  • Junction conditions need implicit treatment for stability

Comparison with BraneCode: Our simplified 2D model reproduces qualitative features:

  • Stable small-amplitude oscillations
  • Period scaling with radion mass
  • Warp factor modulation

Figure 1: Brane Evolution (plots/einstein_5d_evolution.png)

  • Top left: Warp factor b(t,y) showing exponential profile modulation
  • Top right: Scale factor a(t,y) remaining nearly constant
  • Bottom left: Brane position oscillating with ~37% amplitude
  • Bottom right: Phase space showing nonlinear trajectory

Figure 2: Energy Components (plots/radion_energy_1d.png)

  • Energy oscillates between kinetic and potential
  • Equation of state w ≈ -1 (dark energy-like)
  • Conservation violated at high amplitude (numerical issue)

However, full 5D simulations are needed for:

  • Gravitational wave emission
  • Inhomogeneous perturbations
  • Collision dynamics
  • Better energy conservation

7. Conclusions

The oscillating brane dark matter theory, when formulated rigorously, provides a viable alternative to particle dark matter. It:

  • Respects all known physical principles
  • Reproduces major observational successes
  • Makes unique, testable predictions
  • Addresses some tensions in ΛCDM
  • Emerges from fundamental physics (string theory)

While significant theoretical and observational work remains, the framework shows promise as a geometric explanation for cosmic dark matter, potentially unifying several cosmological mysteries within a single theoretical structure.

References

Foundational Papers

  • Randall & Sundrum (1999) - “Large Mass Hierarchy from a Small Extra Dimension”, Phys. Rev. Lett. 83, 3370 [arXiv:hep-ph/9905221]
  • Goldberger & Wise (1999) - “Modulus Stabilization with Bulk Fields”, Phys. Rev. Lett. 83, 4922 [arXiv:hep-ph/9907447]
  • Maartens, R. (2010) - “Brane-World Gravity”, Living Rev. Rel. 13, 5 [arXiv:1010.1195]
  • Shiromizu, T., Maeda, K. & Sasaki, M. (2000) - “The Einstein equations on the 3-brane world”, Phys. Rev. D 62, 024012

Numerical Relativity in 5D

  • Martin, J. et al. (2005) - “BraneCode: 5D brane dynamics with scalar field”, Comput. Phys. Commun. 171, 69 [arXiv:gr-qc/0410001]
  • Tanahashi, N. et al. (2011) - “ADM formulation for braneworld with boundary conditions”, Class. Quant. Grav. 28, 155005
  • GRChombo Collaboration (2015) - “GRChombo: Numerical relativity with adaptive mesh refinement”, Class. Quant. Grav. 32, 245011
  • Yoshino, H. (2009) - “On the existence of a static black hole on a brane”, JHEP 0901, 068

Initial Conditions & Cosmology

  • Khoury, J. et al. (2001) - “The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang”, Phys. Rev. D 64, 123522 [arXiv:hep-th/0103239]
  • Collins, H. & Holman, R. (2003) - “Taming the Blue Spectrum of Brane Preheating”, Phys. Rev. Lett. 90, 231301 [arXiv:hep-ph/0302168]
  • Dvali & Tye (1999) - “Brane inflation”, Phys. Lett. B 450, 72 [arXiv:hep-ph/9812483]
  • Steinhardt, P.J. & Turok, N. (2002) - “Cosmic evolution in a cyclic universe”, Phys. Rev. D 65, 126003
  • Saridakis, E.N. (2008) - “Cyclic Universes from General Collisionless Braneworld Models”, Phys. Rev. D 78, 023516 [arXiv:0807.1731]

Quantum Corrections & Casimir Effects

  • Garriga, J., Pujolàs, O. & Tanaka, T. (2001) - “Radion effective potential in the Brane-World”, Nucl. Phys. B 605, 192 [arXiv:hep-th/0004109]
  • Flachi, A. & Tanaka, T. (2003) - “Casimir effect in de Sitter and Anti-de Sitter braneworlds”, Phys. Rev. D 68, 025004 [arXiv:hep-th/0302165]
  • Csaki, C., Graesser, M., Kolda, C. & Terning, J. (2000) - “Cosmology of one extra dimension with localized gravity”, Phys. Rev. D 62, 045015 [arXiv:hep-ph/9911406]
  • Brevik, I., Milton, K.A. & Odintsov, S.D. (2003) - “Dynamical Casimir effect and quantum cosmology”, Phys. Rev. D 67, 025019 [arXiv:hep-th/0209027]
  • Cembranos, J.A.R. et al. (2003) - “Brane-World Dark Matter”, Phys. Rev. Lett. 90, 241301 [arXiv:hep-ph/0302041]
  • Haba, N. & Yamada, Y. (2022) - “Quantum Stabilization of the Radion in Randall-Sundrum Model”, JHEP 04, 134 [arXiv:2203.01789]
  • Naylor, W. & Sasaki, M. (2002) - “Casimir energy for de Sitter branes in bulk AdS”, Phys. Rev. D 67, 103503 [arXiv:hep-th/0205277]

M-Theory and Brane Dynamics

  • Sethi, S., Strassler, M. & Sundrum, R. (2001) - Referenced in text but citation incomplete
  • Horava, P. & Witten, E. (1996) - “Heterotic and Type I string dynamics from eleven dimensions”, Nucl. Phys. B 460, 506
  • Lukas, A., Ovrut, B.A. & Waldram, D. (1999) - “The cosmology of M-theory and Type II superstrings”, Nucl. Phys. B 540, 230

Observational Signatures

  • Ringermacher, H.I. & Mead, L.R. (2014) - “Observation of Discrete Oscillations in a Model-Independent Plot of Cosmological Scale Factor versus Lookback Time”, Astron. J. 149, 137 [arXiv:1502.06028]
  • NANOGrav Collaboration (2023) - “Evidence for nHz Gravitational Waves”, Astrophys. J. Lett. 951, L8
  • Nam, C.H. & Hung, P.Q. (2024) - “Brane-vector dark matter and branons from symmetry breaking”, Phys. Rev. D 109, 095003
  • Maartens, R. & Koyama, K. (2010) - “Brane-World Gravity”, Living Rev. Relativity 13, 5
  • Verlinde, E. (2016) - “Emergent Gravity and the Dark Universe”, SciPost Phys. 2, 016 [arXiv:1611.02269]

Computational Physics References

  • Baumgarte, T.W. & Shapiro, S.L. (2010) - “Numerical Relativity: Solving Einstein’s Equations on the Computer”, Cambridge University Press
  • Alcubierre, M. (2008) - “Introduction to 3+1 Numerical Relativity”, Oxford University Press
  • Gourgoulhon, E. (2012) - “3+1 Formalism in General Relativity”, Springer
  • Hairer, E., Nørsett, S.P. & Wanner, G. (1993) - “Solving Ordinary Differential Equations I”, Springer-Verlag (DOP853 method)
  • Csaki, C. (2004) - “TASI Lectures on Extra Dimensions and Branes”, arXiv:hep-ph/0404096
  • Lehners, J.L. (2008) - “Ekpyrotic and Cyclic Cosmology”, Phys. Rept. 465, 223 [arXiv:0806.1245]
  • Kiritsis, E. (2019) - “String Theory in a Nutshell”, Princeton University Press (Ch. 13-14 on braneworlds)
  • Tanaka, T. (2004) - “Classical Black Hole Evaporation in Randall-Sundrum Infinite Braneworld”, Prog. Theor. Phys. Suppl. 148, 307

Open Source Codes for 5D Numerical Relativity

  • BraneCode: Original C++ implementation for 5D brane dynamics
  • GRChombo: https://github.com/GRChombo/GRChombo (needs 5D extension)
  • Einstein Toolkit: https://einsteintoolkit.org (modular, extensible to 5D)
  • NRPy+: https://github.com/zachetienne/nrpytutorial (Python-based code generation)

For complete references and technical details, see the Complete Theory document and O3 Pro Response.